
Structural and Functional Sequence Test of Dynamic
and State-Based Software with Evolutionary Algorithms

André Baresel1, Hartmut Pohlheim1, Sadegh Sadeghipour2

1 DaimlerChrysler AG, Research and Technology, Methods and Tools
Alt-Moabit 96a, 10559 Berlin, Germany

{andre.baresel, hartmut.pohlheim}@daimlerchrysler.com
2 IT-Power Consultants, Jasmunder Str. 9,

13355 Berlin, Germany
sadegh@itpower.de

Abstract. Evolutionary Testing (ET) has been shown to be very successful for testing
real world applications [10]. The original ET approach focuses on searching for a high
coverage of the test object by generating separate inputs for single function calls.
We have identified a large set of real world application for which this approach does
not perform well because only sequential calls of the tested function can reach a high
structural coverage (white box test) or can check functional behavior (black box tests).
Especially, control software which is responsible for controlling and constraining a
system cannot be tested successfully with ET. Such software is characterized by stor-
ing internal data during a sequence of calls.
In this paper we present the Evolutionary Sequence Testing approach for white box
and black box tests. For automatic sequence testing, a fitness function for the applica-
tion of ET will be introduced, which allows the optimization of input sequences that
reach a high coverage of the software under test. The authors also present a new com-
pact description for the generation of real-world input sequences for functional testing.
A set of objective functions to evaluate the test output of systems under test have been
developed. These approaches are currently used for the structural and safety testing of
car control systems.

1 Introduction to Sequence Testing
When analyzing the code of real world applications, a large set of implementations can
be identified which use a functional model whereby a controller procedure is called peri-
odically. In the world of car control units it is very common for a software function to be
based on an initialization and step function. Whereas the initialization function is only
called once at the beginning, the step function is executed at regular time intervals e.g.
every 10 milliseconds. A cruise control and vehicle-to-vehicle distance controller pro-
gram (Distronic) which checks the velocity and distance to a leading vehicle at regular
intervals to find out if a safe distance is maintained is an example of control software
(structure shown in figure 7).

This kind of software seems to be very specific. However, an equivalent situation can
be found within object oriented software. OO software systems implement objects which
often create their own internal storage and methods. The methods initialize and alter the
objects data during its life-time. It is very common for an object to provide an interface to
initialize and change its data. The implemented functions behave differently on the basis
of the object’s inputs and internal settings.

Depending on the complexity of the system
under test automatic testing can be performed in
three different ways. The approach commonly
used is to generate pairs of initial states and
input situations shown in figure 1. This ap-
proach works well for simple software models
but raises several problems. At first, the direct
setting of internal states is not possible in all
cases and needs changes to be made to program
under test. By generating the internal states the
test system has to make sure that the states
produced are valid according to the specifica-
tion. Forcing the system into a generated state is, in most cases, not useful for the tester.
This is because the tester has to use the test data generated to analyze software bugs. He
needs first to ascertain how to produce the initial state which causes the problem. This
information is not provided by this test automation.

For complex systems it is necessary to
search for an input sequence. One approach
is to create lists of inputs for sequential calls
of the function under test. This is often suf-
ficient for software systems based on state
models, see figure 2.

For control systems requiring long ‘real
world’ input sequences, encoded input func-
tions must be generated. Figure 3 presents
this third approach.

Monitoring the sequence test of a system
differs from the original ET approach. For

white box tests, a list of execution paths has to be analyzed. Black box tests are per-
formed on sequences of output values instead of single values. This allows the assess-
ment of dynamic functional and safety criteria.

The two approaches for generating input sequences are, from the tester’s point of
view, the best solution since they guarantee that the system is tested in the same way as it
will later be used.

Figure 3. Automatic testing by generating input sequences from encoded input functions (third
approach)

Figure 1. Automatic testing by generat-
ing (state, input) pairs (first approach)

Figure 2. Automatic testing by generating
list of inputs (second approach)

Section 2 describes how evolutionary algorithms (EA) have been applied to structural
and functional sequence testing. Both applications have been implemented by the authors
and results of real world experiments will be presented. Structural Sequence Testing has
been tested with the generation of input sequences, see section 3. Functional Sequence
Testing, see section 4, has been applied to Safety Tests by creating encoded input func-
tions.

2 Overview of Evolutionary Testing (ET)
Evolutionary algorithms (EA) have been used to search for data for a wide range of ap-
plications. EA is an iterative search procedure using different operators to copy the be-
havior of the biologic evolution. Using EA for a search problem it is necessary to define
the search space and the objective function (fitness). The algorithms are implemented in a
widely used tool box [7]. It consists of a large set of operators e.g. real and integer pa-
rameter, migration and competition strategies.

Figure 4. The structure of Evolutionary Testing

Evolutionary Testing uses EA to test software automatically. The different software test
criteria formulate requirements for a test case set to be generated. Until now, the genera-
tion of such a set of test data usually had to be carried out manually. Automatic software
testing generates a test data set automatically, aiming to fulfill the requirements in order
to increase efficiency and resulting in an enormous cost reduction.

Evolutionary Structural Testing. Structural Testing has the goal of automating the test
case design for white box testing criteria [2]. Taking a test object, namely the software
under test, the goal is to find a test case set (selection of inputs) which achieves full struc-
tural coverage. The general idea is a separation of the test into test aims and the use of
EA to search for test data fulfilling the test aims.

The separation of the test into partial aims and the definition of fitness functions for
partial aims are performed in the same manner for each test criterion. Each partial aim
represents a program structure that requires execution in order to achieve full coverage of
the structural test criterion selected, i.e. each single statement represents a partial aim
when using statement coverage.

The definition of a fitness function, that represents the test aim accurately and supports
the guidance of the search, is a prerequisite for the successful application of Evolutionary
Test. In order to define the fitness function, this research builds upon previous work deal-

ing with branching conditions (among others [8], [5], and [9]). These are developed in
[10] by introducing the idea of an approximation level.

Evolutionary Functional Testing. Complex dynamic systems must be evaluated over a
long time period (longer than the highest internal dead time or time constant). This means
that the systems must not be stimulated for only few simulation steps, but rather the input
signals must be up to hundreds of time steps long. Long input sequences are therefore
necessary in order to simulate these systems.

Several disadvantages result from the length of the sequences necessary: the number
of free variables during optimization is very high and the correlation between the vari-
ables is great. For this reason, one of the most important aims is the development of a
very compact description for the input sequences. This must contain as few elements as
possible but, at the same time, offer a sufficient amount of variety to stimulate the system
under test as much as necessary.

Moreover, possibilities for automatically evaluating the system answers must be de-
veloped, which allow differentiation between the quality of the individual input se-
quences. These requirements and the solutions developed will be presented in section 4.

3 Evolutionary Algorithms for Structural Sequence Testing
The evolutionary structural test was designed originally to find a set of test data for single
function calls which results in a high structural coverage of the software under test. This
approach has been defined for the most common test criteria in [10]. The fundamental
idea is the transformation of the test data generation into a search problem which is then
solved by evolutionary algorithms. The optimization function designed for this calculates
so-called fitness values. The evolutionary algorithm uses these values to optimize the
solution to meet the test aim currently selected.

Structural Sequence Testing targets the structural coverage of a given test object. For
this reason, test aims are defined in the same manner as introduced for ET. However, in
order to apply evolutionary algorithms it is necessary to redefine the search space and the
fitness function because test cases are now input sequences each executing several paths
(see figure 5).

Figure 5. Test case (sequence) and different execution paths for the inputs; On the right hand side
an example memory model is shown, where each step results in a state change

3.1 Search Space Structure
In the original approach the search space is formed by the input parameters of the func-
tion under test. This is different for sequence tests. The authors decided to implement the
generation of input sequences for the first experiments in the area of structural tests. With
this approach one test datum is a list of inputs. Monitoring a test case will return a list of
execution paths (one per input). The length of this list is not defined in the test object and
is, in general, not limited for control systems.

Figure 6. The encoding of the test case data to different runs

For evolutionary algorithms, an encoding of the individuals generated (mapped to test
data) has to be defined. A straightforward approach is to let the user specify the length of
the input sequences manually. With the information on the sequence length a search
space is formed by replicating all input parameters in such a way that a separate value
will be provided for each call and each parameter. Every individual generated by the EA
represents the data of one sequence of calls (here called test data). Figure 6 shows the
mapping of the data.

3.2 Sequence Evaluation
As mentioned previously, the test criteria for structural coverage are defined on the basis
of the test object source code. An automatic test system has to monitor and analyze all
runs of the test object to find out which test aims have been reached (structures that have
been covered) and to provide a fitness value for the test aim currently selected. This fit-
ness is determined by monitoring the test execution.

In the original ET approach, fitness is calculated by analyzing one execution path
through the test object. This is different in sequence testing, since each test case run re-
sults in a list of execution paths. This list is the basis upon which a fitness value has to be
calculated. The sequence testing fitness function introduced here uses the original idea of
the fitness function and creates a sequence fitness value from that.
For structural coverage it is not important at which step of a sequence a structural ele-
ment is covered. For this reason, the authors decided to design a fitness function which
analyzes all the execution paths of a test case sequence and uses the closest path to the
test aim as the fitness of the sequence. With this approach it does not matter whether a
close execution path is traversed earlier or later in the sequence and whether or not the
EA is able to create better performing solutions by ordering the sequence in different
ways (see [1] for details of sequence optimization).

The original ET approach uses decisive branches to ascertain the fitness of an execu-
tion path (see [10]). This idea can be reused by analyzing each path of the sequence and

determining an overall fitness. Due to the fitness function’s structure, it has to be mini-
mized by the EA. For this reason, the overall fitness is the minimum of the path fitness
values. Using this approach the best path will define the fitness of the sequence.

3.3 Experiments
The experiments on Structural Sequence Testing were performed with an extended ver-
sion of the automatic structural test system. The GEATbx [7] is the optimization compo-
nent used by the system. The authors applied the standard settings for this class of prob-
lem (namely, 6 subpopulations with 50 individuals each, linear ranking, a selection pres-
sure of 1.7, migration and competition between subpopulations). A real valued represen-
tation is used. The subpopulations employ different search strategies by using different
settings for the recombination (discrete and line recombination) and mutation operator
(real valued mutation with differently sized mutation steps – large, medium and small).

Table 1. Information on the complexity of the test objects

Name Size LO
C

nodes pa-
ram.

if–then condi-
tions

nesting level

Ctrl_S 16kB 220 20 28 5 6 2
Enable_S 54kB 800 140 15 51 70 10
Enable_A 44kB 520 86 11 39 56 8

Three software functions which are part of a large real-world functional model were
tested using the extended ET system. Table 1 provides an overview of the complexity
measures for the test objects. The test object Ctrl_S is relatively small but is code gener-
ated from a state diagram containing flags in all conditions.

Table 2. Experimetal results, showing the numbers of test aims, number of individuals generated
and reached coverage

 Coverage crite-
ria

test aims num. individu-
als

coverage not reached

StatementCover 17 550 000 95 % 1
BranchCover 23 650 000 91 % 2

C
trl

_S

ConditionCover 12 370 000 92 % 1
StatementCover 135 225 000 99 % 1

BranchCover 196 550 000 98 % 5

En
ab

le
_S

ConditionCover 168 650 000 97 % 5
StatementCover 87 390 000 95 % 5

BranchCover 126 495 000 92 % 11

En
ab

le
_A

ConditionCover 116 425 000 94 % 8

The three standard test criteria were employed. Statement cover requires a test case set
that executes all statements of the software under test. The branch cover criterion requires
a test case set traversing all branches of a test object. Last but not least, condition cover
necessitates a collection of test data evaluating all the atomic conditions of a program
with the values true and false.

The high coverage reached for all the criteria can be seen in table 2. Only a few of the
test aims not reached are a sequence test specific problem. Some of them refer to the
problem of unreachable code created by the code generator and some to the problem of
performing an evolutionary test with flag conditions. However, in the next paragraphs we
would like to give an short overview of the reasons why certain test goals were not
reached.

Test result details for test object ‘Ctrl_S’. This test object was difficult to test with the
original ET approach due to the source code structure. The code was generated from a
state diagram. All the program’s conditional statements use flags that have been assigned
previously. Some conditions access flags that have been assigned in previous calls of the
function which result in the test object requiring sequence tests. The test runs have shown
that this kind of software does not pose a problem for the approach, since all sequence
test specific test aims have been covered. For one statement, the corresponding two
branches and the flag condition of a sequence could not be found because the search was
not guided to a flag assignment within a function call.

Test results for test object ‘Enable_S’. The testing of this module demonstrates the
potential of the evolutionary testing approach. The test object consists of 800 lines of
code leading to 135 control flow nodes, 196 branches and 168 test aims for simple condi-
tion cover.

During the statement coverage test only one statement was not executed. The non-
executable statements, branches or conditions appear when using current versions of code
generators. This occurs if the developer uses template library functions and configures
them with constants. This leads to a comprehensible model with reuse of components but
the code generated contains lines of code that are not executable.

The performance of the branch coverage test was more challenging, resulting in cov-
erage of 98%. Only five branches were not traversed. Upon checking the code we found
that two branches belong to the non-executable statement. One branch is not executable
because the associated condition cannot be evaluated as false. The evolutionary test sys-
tem was not able to find an input for two conditions which depend on sequential calls.
This is due to the high nesting level of dependent variable assignments and uses. At the
moment it is not possible to guide the search to a solution that executes an assignment in
one sequence step and traverses the corresponding condition in later steps. This would
require further research.

The results of simple condition cover were good in that the evolutionary test found a
test case set covering 97% of the test aims. For the reason why the five conditions not
covered were missed, see the paragraph on branch coverage above.

Test results for test object ‘Enable_A‘. This module is not particularly complex with
regard to metrics, however, it contains some program structures that are difficult to test.
First of all, the code is state oriented and many conditions depend on the settings of state
variables. The function has a high nesting level of if-then-else statements and employs a
state encoded using a set of flags. Again, the test object contained unfeasible code be-
cause of the use of library templates (3 statements). Two other statements were not cov-
ered because of the flags used in the conditions. The results of branch coverage are simi-
lar to those of statement coverage. The test case set found did not cover 4 branches start-
ing at flag conditions and 6 branches are placed at unreachable code. One branch could
not be traversed because a precondition had not been satisfied. This branch requires an

input sequence assigning two variables in previous calls of the function. The approach
does not find a solution for this. The condition cover test returned equivalent results. Four
of the conditions are not feasible because of the generation of code. The test system did
not find an input sequence covering three flag conditions. Again, the condition which
requires variable settings in previous calls was not fulfilled.

4 Evolutionary Algorithms for Functional Sequence Testing
The generation of test sequences for dynamic real-world systems pose a number of chal-
lenges:

- The input sequences must be long enough to stimulate the system realistically.
- The input sequences must possess the right qualities in order to stimulate the system

adequately. This concerns aspects such as the type of signal, speed and rate of signal
change.

- The output sequences must be evaluated regarding a number of different conditions.
These conditions are often contradictory and several of them can be active simultane-
ously.

In order to develop a test environment for the functional test of dynamic systems, which
can be applied in practice, the following main tasks must therefore be completed.

- Creation of a compact description for the input sequences,
- Evaluation of output sequences regarding defined requirements,
- Inclusion of input sequence generation and evaluation of system requirements into an

optimization process.
Throughout the whole section examples are given using a real-world system. The struc-
ture of the integrated cruise control and vehicle-to-vehicle distance control (Distronic) is
shown in figure 7. An extensive description is contained in [3].

The test environment presented in this section is implemented in Matlab and used for
the testing of Simulink/Stateflow models. However, we concentrate on the presentation
of the main concepts and the demonstration of results.

8

driver_warning

7

cruisectrl_mode

6

dist_rel

5

dist_req

4

a_act

3

gear_act

2

v_act

1

v_req

v_trgtcar

v_act

dist_rel

v_rel

trgt_detected

target detection

pedal_positions

v_act

torques_req

pedal_flags

pedal interpretation

torques_req

pedal_flags

ctrl_lever

trgt_data

dist_factor

car_data

v_req

driver_warning

manipulated vars

cruisectrl_mode

dist_req

cruise control

manipulated vars

v_act

tot_transm_ratio

mot_rot_speed

gear_act

a_act

throttle_valve_angle

car model

Mux

Mux

Mux

5

dist_factor

4

v_trgtcar

3

ctrl_lever

2

brake_angle

1

throttle_angle

Figure 7. Model of an integrated cruise control and vehicle-to-vehicle distance control (Distronic)

4.1 Description of Input Sequences
In order to describe the input sequences, several descriptions must be differentiated. On
the one hand we have the description of the signal, which is used as input for the simula-
tion of the dynamic system (simulation sequence). On the other hand we have the com-
pact description which the user stipulates (compact user description). Between these is

the description of the boundaries of the variables for the optimization (description of
sequence bounds) as well as the instantiation of the individual sequences (optimization
sequence). These different sequence description levels are illustrated in figure 8.

interpolation

transformation
instantiation

compact
user

description
sequence
bounds optimization

sequences simulation
sequences
(sampled
signals)

Figure 8. Different levels of input sequence description

For a compact description the long simulation sequence is subdivided into individual
sections. Each section is represented by a base signal, which is parameterized by the
variables: signal type, amplitude and length of section. We use the following base signal
types: step, ramp (linear), impulse, sine, spline. These base signal types are sufficient to
generate any signal curve.

Only the possible areas for these parameters are specified for the optimization. In this
way, the bounds are defined, within which the optimization generates solutions, which
are subsequently evaluated by the objective function with regard to their quality.

The amplitude of each section can be defined absolutely or relatively. The length of
the section is always defined relatively (to ensure the monotony of the signal). The base
types are given as an enumeration of possible types. These boundaries must be defined
for each input of the system. For nearly every real-world system these boundaries can be
derived from the specification of the system under test.

An example of an input sequence description is provided in figure 10. The textual de-
scription as defined by the tester is given. Figure 10 provides examples of three different
input signals generated by the optimization.
Input.Names = {'throttle_angle', 'brake_angle', 'ctrl_lever', ...
 'v_trgtcar', 'dist_factor'};
Input.BasePoints = [10, 10, 10, 10, 2]
Input.Amplitude.Bounds = [0, 0, 0, 0, 1;...
 100, 100, 3, 30, 1]
Input.Amplitude.Interpret = {'abs', 'abs', 'abs', 'abs', 'abs'};
Input.Basis.Bounds = [1, 1, 1, 1, 1; ...
 3; 3; 5; 3; 3]
Input.Transition.Pool = { {'linear', 'spline'}; {'linear'}; {'impulse'}; ...
 {'spline'}; {'step'} };
Sim.Length = 200; Sim.SamplingRate = 2.5;

Figure 9. Textual description of input sequences

The system under test (Distronic) has 5 inputs. We use 10 sections for each sequence.
The amplitude for the throttle pedal can change between 0 and 100, the control lever can
only have the values 0, 1, 2 or 3.

In real-world applications the variety of an input signal is often constrained with re-
gard to possible base signal types. An example of this is the control lever in figure 9. This
input contains only impulses as the base signal type.

To generate a further bounded description it is possible to define identical lower and
upper bounds for some of the other parameters. In this case, the optimization has an
empty search space for this variable – this input parameter is a constant. An example is
the distance factor (a measure for the relative distance to the preceding vehicle) in fig-

ure 10. This input signal is always set to a constant value of 1. Thus, it is not part of the
optimization (but used as a constant value for the generation of the internal simulation
sequence).

0 50 100 150 200
0

10

20

30

40

50

60

70

80

90

100

angle of throttle pedal

time [s]

th
ro

ttl
e_

an
gl

e
[d

eg
]

0 50 100 150 200
0

0.5

1

1.5

2

2.5

3

position of control lever

time [s]

ct
rl_

le
ve

r

0 50 100 150 200
0

5

10

15

20

25

30

velocity of target car

time [s]

v_
tr

gt
ca

r
[m

/s
]

0 50 100 150 200
0

10

20

30

40

50

60

70

80

90

100

angle of throttle pedal

time [s]

th
ro

ttl
e_

an
gl

e
[d

eg
]

0 50 100 150 200
0

0.5

1

1.5

2

2.5

3

position of control lever

time [s]

ct
rl_

le
ve

r

0 50 100 150 200
0

5

10

15

20

25

30

velocity of target car

time [s]

v_
tr

gt
ca

r
[m

/s
]

Figure 10. Instances of simulation sequences generated by the optimization based an the textual
description in figure 9; left: throttle pedal, middle: control lever, right: velocity of target car

All these different levels of the description of the input sequences ensure that the re-
quirements for an adequate simulation of the system and a very compact and comprehen-
sible description by the tester are fulfilled. The compact description is used for the opti-
mization ensuring a small number of variables. When comparing the size of both descrip-
tions for the example dynamic system used (5 inputs – one of the inputs is constant, 10
signal sections, 3 variable parameters for each section, 200 seconds simulation time,
sampling rate 2.5 Hz) the differences are enormous:

8.20
120
2500

120310)15(
25005.22005

==
=⋅⋅−=

=⋅⋅=
nRatioCompressio

ontDescriptiSizeCompac
tionSignalSizeSimula (1)

Only this compact description opens up the opportunity to optimize and test real-world
dynamic systems within a realistic time frame.

4.2 Evaluation of Output Sequences and Objective Function
The test environment for the functional test of dynamic systems must perform an evalua-
tion of the output sequences generated by the simulation of the dynamic system. These
output sequences must be evaluated regarding the optimization aims. During the test we
always search for violations of the defined requirements. Possible aims of the test are to
check for violations of:

- signal amplitude boundaries,
- signal dependencies,
- maximal overshoot and maximal settlement time.

Each of these checks must be evaluated over the whole or a part of the signal lengths and
an objective value generated. Due to space constraints we describe only the first two
requirements in detail. However, our test environment can assess all of the checks (and
more will be added).

t

y

y(t)

ymax

ymin

 t

ov
er

sh
oo

tu(t)

y
y(t)

Figure 11. left: violation of maximum amplitude; right: assessment of signal overshoot

An example of the violation of signal amplitude boundaries is given in figure 11, left. A
minimal and maximal amplitude value is defined for the output signal y. In this example
the output signal violates the upper boundary. The first violation is a serious violation as
the signal transgresses the bound by more than a critical value yc (parameter for this re-
quirement). In this case, a special value indicating a severe violation is returned as the
objective value (value -1), see equation (2). The second violation is less severe, as the
extension over the bound is not critical. At this point an objective value indicating the
closeness of the maximal value to the defined boundary is calculated. This two-level
concept allows a differentiation in quality between multiple output signals violating the
bounds defined. The direct calculation of the objective value is provided in equation (2).

()()

+<

+≥−
==

c

c

yysignal
y

signal

yysignal
ObjValtysignal

maxmax

6

max

max

maxmax

maxmax

1
max

 (2)

A similar assessment is used for calculating the objective value of the overshoot of an
output signal after a jump in the respective reference signal. First, the maximal overshoot
value is calculated. Next, the relative height of the overshoot is assessed. A severe over-
shoot outside the specification returns a special value (again –1). This special value is
used to terminate the current optimization. The test was successful, as we were able to
find a violation of the specification and thus reach the aim of the optimization. In all
other cases, an objective value equivalent to the value of the overshoot is calculated
(similar to equation (2)).

Each of the requirements tested produces one objective value. For nearly every realis-
tic system test we receive multiple objective values. In order to assess the quality of all
objectives tested we employ multi-objective ranking as supported by the GEATbx [7].
This includes Pareto-ranking, goal attainment, fitness sharing and an archive of previ-
ously found solutions.

4.3 Experiments
The test environment was used for the functional testing of a number of real-world sys-
tems. One of these is the Distronic model described earlier ([3], structure shown in fig-
ure 7), for which the results of one test will be presented in this subsection.

For the car system with an activated Distronic the maximum speed was specified at 44
m/s (the critical value yc was set to 0). This means that a higher speed is not permitted
under any circumstances. Thus, a test was specified to search for inputs which produce a
speed greater than this boundary.

With an active Distronic the car can be accelerated only by pushing the control lever
upwards (the respective input value is 1). The car is decelerated by pushing the control
lever downwards (input value: 2). Beside the amplitude of the input control lever, the
relative length of the signal sections could be changed between 1 and 5. The results of
one successful optimization are shown in figures 12 and 13.

0 5 10 15 20
−50

0

50

100

150

200

250

300

generation

ob
je

ct
iv

e
va

lu
e

Best objective values

 generation

in
de

x
of

 v
ar

ia
bl

e

variables of best indiv.

0 5 10 15

5

10

15

20

25

30

35

40

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

 generation

in
de

x
of

 in
di

vi
du

al

Obj. vals of all gen. (85% best)

0 5 10 15

2

4

6

8

10

12

14

16

18

20 265

270

275

280

285

290

295

Figure 12. Visualization of the optimization process, left: best objective value; middle: variables of
the best individual; right: objective value of all individuals

The optimization process is visualized in figure 12. The left graphic presents the progress
of the best objective value over all the generations. The optimization continually finds
better values. In the 19th generation a serious violation is detected and an objective value
of –1 returned. The middle graphic presents the variables of the best individual in a
(gray) color quilt. Each line represents the value of one variable over the optimization.
The graphic on the right visualizes the objective values of all the individuals during the
optimization (generations 1 to 18).

0 20 40 60
0

0.5

1

1.5

2

position of control lever

time

ct
rl_

le
ve

r

0 20 40 60
0

0.5

1

1.5

2

position of control lever

time

ct
rl_

le
ve

r

0 20 40 60
0

5

10

15

20

25

30

35

40

velocity

time

v_
ac

t [
m

/s
]

0 20 40 60
0

5

10

15

20

25

30

35

40

velocity

time

v_
ac

t [
m

/s
]

Figure 13. Problem-specific visualization of the best individual during the optimization, left: input
of the control lever - begin and end of optimization (2nd and 19th generation), right: vehicle velocity
- begin and end of optimization (2nd and 19th generation);

The graphics in figure 13 provide a much better insight into the quality of the results,
visualizing the problem-specific results of the best individual of each respective genera-
tion. The input of the control lever is shown in the two left side graphics. The resulting
velocity of the car is presented at the right. The graphics are taken from the 2nd (left) and
19th generation (right). At the beginning the maximal velocity is far below the critical
boundary. During the optimization the velocity is increased (the control lever is pushed
up more often and at an earlier stage as well as being pushed down less frequently). At
the end an input situation is found, in which the velocity is higher than the bound speci-
fied. By looking at the respective input signals the developer can check and change the
implementation of the system.

During optimization we employed the following evolutionary parameters: 20 indi-
viduals in 1 population, discrete recombination and real valued mutation with medium
sized mutation steps, linear ranking with a selection pressure of 1.7 as well as a genera-
tion gap of 0.9. Other tests with a higher number of relevant input signals and thus more
optimization variables employ 4-10 subpopulations with 20-50 individuals each. In this
case, we use migration and competition between subpopulations. Each subpopulation
uses a different strategy by employing different parameters (most of the time differently
sized mutation steps).

5 Conclusion
In this paper we have presented different approaches for applying Evolutionary Testing
to sequence testing. The first method aims at automating test case generation to achieve
high structural coverage of the system under test (white box test). The other approach
searches for input sequences violating the specified functional behavior of the system
(black box test).

Both test methods were implemented. Experiments with software modules and dy-
namic systems with varying complexity were conducted. We have presented a small
selection of the results. The results show the new test methods to be promising. It was
possible to find test sequences, without the need for user interaction, for problems which
could previously not be solved automatically.

During the experiments a number of issues were identified which could further im-
prove the efficiency of the test methods presented. For the structural sequence test, a
fitness function which expresses the dependency between successive sequence steps
would significantly aid the search process. In the case of the functional sequence test, it is
necessary to include as much as possible of the existing problem-specific knowledge into
the optimization process.

References
[1] Baresel, A., Sthamer, H., Schmidt, M.: Fitness Function Design to improve Evolutionary Structural

Testing. Proceedings of GECCO2002, New York, USA, pp. 1329-1336, 2002.
[2] Beizer, B.: Software Testing Techniques. New York: Van Nostrand Reinhold, 1983.
[3] Conrad, M., Hötzer, D.: Selective Integration of Formal Methods in the Development of Electronic

Control Units. Proceedings of Second IEEE International Conference on Formal Engineering
Methods ICFEM’98, IEEE Computer Society, pp. 144-155, 1998.

[4] Harman, M., Hu, L., Munro, M., Zhang, X.: Side-Effect Removal Transformation. IEEE Interna-
tional Workshop on Program Comprehension (IWPC) Toronto, Canada, 2001.

[5] Jones, B.-F., Sthamer, H., Eyres, D.: Automatic structural testing using genetic algorithms. Soft-
ware Engineering Journal, vol. 11, no. 5, pp. 299–306, 1996.

[6] Korel, B.: Automated Test Data Generation. IEEE Transactions on Software Engineering, vol. 16
no. 8, pp.870-879, 1990.

[7] Pohlheim, H.: GEATbx - Genetic and Evolutionary Algorithm Toolbox for Matlab.
http://www.geatbx.com/, 1994-2003.

[8] Sthamer, H.: The Automatic Generation of Software Test Data Using Genetic Algorithms. PhD
Thesis, University of Glamorgan, Pontyprid, Wales, Great Britain, 1996.

[9] Tracey, N., Clark, J., Mander, K., McDermid, J.: An Automated Framework for Structural Test-
Data Generation. Proceedings of the 13th IEEE Conference on Automated SE, Hawaii, USA, 1998.

[10] Wegener, J., Sthamer, H., Baresel, A.: Evolutionary Test Environment for Automatic Structural
Testing. Special Issue of Information and Software Technology, vol. 43, pp. 851–854, 2001.

[11] Wegener, J., Sthamer, H., Jones, B., Eyres, D.: Testing Real-time Systems using Genetic Algo-
rithms. Software Quality Journal, vol. 6, no. 2, pp. 127–135, 1997.

